Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.09.28.559966

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the rapidly evolving RNA virus behind the COVID-19 pandemic, has spawned numerous variants since its 2019 emergence. The multifunctional NSP14 enzyme, possessing exonuclease and mRNA capping capabilities, serves as a key player. Notably, single and co-occurring mutations within NSP14 significantly influence replication fidelity and drive variant diversification. This study comprehensively examines 120 co-mutations, 68 unique mutations, and 160 conserved residues across NSP14 homologs, shedding light on their implications for phylogenetic patterns, pathogenicity, and residue interactions. Quantitative physicochemical analysis categorizes 3953 NSP14 variants into three clusters, revealing genetic diversity. This research underscores the dynamic nature of SARS-CoV-2 evolution, primarily governed by NSP14 mutations. Understanding these genetic dynamics provides valuable insights for therapeutic and vaccine development.


Subject(s)
Coronavirus Infections , COVID-19
2.
Trials ; 23(1): 255, 2022 Apr 04.
Article in English | MEDLINE | ID: covidwho-1775328

ABSTRACT

BACKGROUND: The 2019 coronavirus disease (COVID-19) pandemic continues to spread and affects large numbers of people with unprecedented impacts. Experimental evidence has already been obtained for use of the standardized extract of Brazilian green propolis (EPP-AF) against viral targets, and clinical rationality has been demonstrated for testing this extract as an adjunct to treatment in patients affected by COVID-19. The BeeCovid2 study aims to assess whether EPP-AF has an impact on the improvement of patients hospitalized with COVID-19 by reducing the length of hospital stay. METHODS: BeeCovid2 is a randomized, double-blinded, placebo-controlled clinical study being conducted in Brazil to provide further evidence on the effectiveness of standardized green propolis extract as an adjunctive treatment for adults hospitalized with COVID-19. Hospitalized patients over 18 years of age with a confirmed diagnosis of COVID-19 and up to 14 days of symptoms were included. Patients under mechanical ventilation at randomization, pregnant women, cancer patients, transplanted or using immunosuppression, HIV patients, patients who used propolis in the last 30 days, bacterial or fungal infection at randomization, impossibility of using medication orally or enterally, and advanced chronic diseases (e.g., advanced heart failure, severe liver disease, and end-stage chronic kidney disease). Enrolled patients are randomized at a 1:1 ratio to receive placebo or standardized propolis extract (900 mg/day) for 10 days. The study treatments are administered in a double-blinded manner, and patients are followed for 28 days. The primary outcome is the difference in length of hospital stay in days between groups. Secondary outcomes include the need for mechanical ventilation, the rate of secondary infection, rate of acute kidney injury, the need for renal replacement therapy, the requirement for vasoactive drugs, the use of an intra-aortic balloon pump (IABP), and the use of extracorporeal membrane oxygenation (ECMO). DISCUSSION: This trial is very useful and will provide more data on the effectiveness of using the standardized Brazilian green propolis extract as an adjunctive treatment in association with standard care in adults hospitalized with moderate to severe acute COVID-19. TRIAL REGISTRATION: ClinicalTrials.gov NCT04800224 . Registered on March 16, 2021.


Subject(s)
COVID-19 Drug Treatment , HIV Infections , Propolis , Adolescent , Adult , Brazil , Female , HIV Infections/drug therapy , Humans , Plant Extracts , Pregnancy , Propolis/adverse effects , Randomized Controlled Trials as Topic
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.15.480592

ABSTRACT

Hyper-transmissibility with decreased disease severity are typical characteristics of Omicron variant. To understand this phenomenon, we used various bioinformatics approaches to analyze randomly selected genome sequences (one each) of the Gamma, Delta, and Omicron variants submitted to NCBI from 15 to 31 December 2021. We show that: (i) Pathogenicity of SARS-CoV-2 variants decreases in the order: Wuhan > Gamma > Delta > Omicron; however, the antigenic property follows the order: Omicron > Gamma > Wuhan > Delta. (ii) Omicron Spike RBD has lower pathogenicity but higher antigenicity than that of other variants. (iii) Decreased disease severity by Omicron variant may be due to its decreased pro-inflammatory and IL-6 stimulation and increased IFN-{gamma} and IL-4 induction efficacy. (iv) Mutations in N protein are associated with decreased IL-6 induction and human DDX21-mediated increased IL-4 production in Omicron. (v) Due to mutations, the stability of S, M, N, and E proteins decrease in the order: Omicron > Gamma > Delta > Wuhan. (vi) Stronger Spike-hACE2 binding in Omicron is associated with its increased transmissibility. However, the lowest stability of the Omicron Spike protein makes Spike-hACE2 interaction unstable for systemic infection and for causing severe disease. Finally (vii), the highest instability of Omicron E protein may also be associated with decreased viral maturation and low viral load leading to less severe disease and faster recovery. Our method may be used for other similar viruses, and these findings will contribute to the understanding of the dynamics of SARS-CoV-2 variants and the management of emerging variants.


Subject(s)
Infections , Poult Enteritis Mortality Syndrome , Reflex, Abnormal
4.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-617827.v1

ABSTRACT

Background The 2019 coronavirus disease (COVID-19) pandemic continues to spread and affects large numbers of people with unprecedented impacts. To date, there is no consensus on a specific treatment. Experimental evidence has already been obtained for use of the standardized extract of Brazilian green propolis (EPP-AF) against viral targets, and clinical rationality has been demonstrated for testing this extract as an adjunct to treatment in patients affected by COVID-19. The BeeCovid2 study is once again assessing EPP-AF in hospitalized patients with coronavirus infection.Methods BeeCovid2 is a randomized, double-blinded, placebo-controlled clinical study being conducted in Brazil to provide further evidence on the effectiveness of standardized green propolis extract as an adjunctive treatment for adults hospitalized with COVID-19. Adults hospitalized with COVID-19 with respiratory symptoms for less than 14 days who are not on invasive oxygen therapy are eligible. Enrolled patients are randomized at a 1:1 ratio to receive placebo or standardized propolis extract (900 mg/day) for 10 days. The study treatments are administered in a double-blinded manner, and patients are followed for 28 days. The primary outcome is the length of hospital stay. Secondary outcomes include the need for mechanical ventilation, the rate of acute kidney injury, the need for renal replacement therapy, the requirement for vasoactive drugs, the use of an intra-aortic balloon pump (IABP), and the use of extracorporeal membrane oxygenation (ECMO).Discussion This trial is very useful and will provide more data on the effectiveness of using the standardized Brazilian green propolis extract as an adjunctive treatment in association with standard care in adults hospitalized with moderate to severe acute COVID-19.Trial registration: ClinicalTrials.gov NCT04800224. Registered on March 16, 2021.


Subject(s)
Coronavirus Infections , Kidney Diseases , COVID-19 , Protoporphyria, Erythropoietic , Takotsubo Cardiomyopathy
5.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-132721.v1

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) associated- severe acute respiratory distress syndrome (ARDS) patients may require prolonged mechanical ventilation, thus resulting in lung fibrosis and high fatality rates. Several therapies have been developed in patients with pneumonia requiring oxygen therapy as well as during the early course of invasive mechanical ventilation. Mesenchymal stromal cells (MSCs) may have a role in controlling the hyperinflammatory response seen in such cases and prevent aggravation or increase/accelerate recovery. While MSC-based therapies have been studied mostly in patients that did not require invasive ventilation or during the first hours of tracheal intubation, to date the potential of MSC therapy to treat advanced-stage of severe/critical COVID-19 cases has not been extensively studied. Methods: This is a case report of a 30-year-old male patient who presented progressive clinical deterioration of COVID-19 in ICU after 21-day admission and 14 days with invasive mechanical ventilation. The first symptom onset was 35 days before MSC therapy. The patient was treated with allogenic human umbilical cord-derived MSCs [5 x 107 (2 doses 2 days interval)].Results: No serious adverse events attributed to MSC administration were observed during and after the procedure. Oxygenation (PaO2/FiO2 ratio) and the need for vasoactive drugs improved. Chest CT scan imaging, which showed signs of bilateral and peripheral ground-glass, consolidation as well as fibrosis, improved significantly during the time course of the disease. Patient was discharged 13 days after cell therapy. Cytokine analysis demonstrated modulation of different mediators accompanied by modulation of different cell populations in peripheral blood, including a reduction in inflammatory monocytes, increased frequency of patrolling monocytes, CD4+ lymphocytes and type 2 classical dendritic cells (cDC2). Conclusion: This study described for the first time the effects of MSC therapy in a patient at late stage COVID-19 associated severe lung injury and fibrosis. Therefore, further clinical trials should be design assessing the efficacy of MSC therapy in ARDS patients undergoing prolonged mechanical ventilation due to COVID-19. 


Subject(s)
Fibrosis , Lung Diseases , Respiratory Distress Syndrome , Pneumonia , COVID-19
6.
preprints.org; 2020.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202004.0003.v2

ABSTRACT

Background: SARS-CoV-2 that are the causal agent of a current pandemic are enveloped, positive-sense, single-stranded RNA viruses of the Coronaviridae family. Proteases of SARS-CoV-2 are necessary for viral replication, structural assembly and pathogenicity. The ~33.8KDa Mpro protease of SARS-CoV-2 is a non-human homologue and highly conserved among several coronaviruses indicating Mpro could be a potential drug target for Coronaviruses.Methods: Here we performed computational ligand screening of four pharmacophores (OEW, Remdesivir, Hydroxycholoquine and N3) that are presumed to have positive effects against SARS-CoV-2 Mpro protease (6LU7) and also screened 50,000 molecules from the ZINC Database dataset against this protease target.Results: We found 40 pharmacophore-like structures of natural compounds from diverse chemical classes that exhibited better affinity of docking as compared to the known ligands. The 10 best selected ligands namely, ZINC1845382, ZINC1875405, ZINC2092396, ZINC2104424, ZINC44018332, ZINC2101723, ZINC2094526, ZINC2094304, ZINC2104482, ZINC3984030, and ZINC1531664, are mainly classified as β-carboline, Alkaloids and Polyflavonoids, and all of them displayed interactions with dyad CYS145 and HIS41 from the protease pocket in a similar way as with other known ligands.Conclusion: Our results suggest that these 10 molecules could be effective against SARS-CoV-2 protease and may be tested in vitro and in vivo to develop novel drugs against this virus.

SELECTION OF CITATIONS
SEARCH DETAIL